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Stress transfer in the fibre fragmentation test 
Part I An improved analysis based on a shear strength criterion 
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An improved micromechanics model has been developed of the stress transfer for a single fibre 
embedded in a matrix subjected to uniaxial loading. Debond crack growth is analysed based on 
the shear strength criterion such that when the interfacial shear stress reaches the shear bond 
strength, debonding occurs; and the average strength concept based on Weibull statistics is 
considered for fibre fragmentation. The influences of the interfacial shear bond strength and the 
fibre strength on the stress distributions in the composite constituents are evaluated. Depending 
on the relative magnitudes of these two strength parameters and given the elastic constants and 
geometric factors, three distinct conditions of the fibre-matrix interface are properly identified 
which include full bonding, partial debonding and full frictional bonding. Also.quantified are the 
necessary criteria which must be satisfied in order for each interface condition to be valid. Finally, 
the mean fibre fragment length is predicted as a function of applied strain using a model 
composite of carbon fibre-epoxy matrix. The parametric study suggests that the critical transfer 
length predicted when the applied strain (or stress) required for further fibre fragmentation 
approaches infinity, can be regarded as a material constant, which is the sum of the bonded and 
the debonded lengths for the model composite. 

1, I n t r o d u c t i o n  
Over the past decades a significant effort has been put 
into understanding the stress transfer in the fibre frag- 
mentation test as a means of evaluating the bond 
quality at the fibre-matrix interface [1]. This endeav- 
our has been prompted by the rapid development of 
technologically important fibres and matrix materials 
and the corresponding new surface treatment tech- 
niques of various nature which have to be compatible 
with the composite fabrication processes and actual 
service environments. 

Since the early work of Cox [2] there have been 
a number of micromechanics models developed to 
predict the stress state, particularly near the broken 
fibre ends, and ultimately to measure the interface 
bond strength. Although some recent works have been 
directed towards the establishment of more reliable 
models by incorporating statistic aspects of fibre frag- 
ment length [3, 4] and fibre strength [5-9], as well as 
plastic deformation of matrix material [10-12] occur- 
ring during the fibre fragmentation test, the basic form 
of relationship between the critical transfer length and 
the shear strength at the interface, whether bonded or 
debonded, remain virtually unchanged from the solu- 
tion originally proposed by Kelly and Tyson [13]. 
Further, in contrast to the conventional opinion of 
either complete bonding or complete debonding (or 
complete matrix yielding whichever occurs first), 

a clearly emerging view in recent years is that there are 
both bonded and debonded interfaces present simul- 
taneously during the fibre fragmentation process 
[14 18]. 

In this context, a comprehensive treatment is given 
[19] in a micromechanics analysis of the fibre frag- 
mentation test on the basis of the concept of fracture 
mechanics. It is assumed there that the debond crack 
propagates along the interface when the differential 
potential energy stored in the constituents of the 
composites is satisfied with respect to the interfacial 
fracture toughness, and the fibre breaks when the 
maximum fibre axial stress occurring at the fibre 
centre exceeds the average tensile strength. Consider- 
ing the partially debonded interface as the most gen- 
eral case, a parametric study has been performed for 
a model composite of carbon fibre-epoxy matrix. It is 
noted that there is a characteristic applied stress (or 
strain) below which no debonding takes place. With 
increasing applied stress from this value the debond 
length increases towards an asymptotic value while 
the bond length decreases relatively slowly. The sum 
of the asymptotic debond and bond lengths can be 
regarded as the shortest mean fibre fragmentation 
length, so-called critical transfer length, which can be 
obtained theoretically for given properties of the com- 
posite constituents and the interface. In practice, how- 
ever, a significantly higher value is expected for the 
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critical transfer length due to the experimental difficult- 
ies associated with the limited ductility of the matrix 
material. 

Although a fracture mechanics approach in general 
deals with a more fundamental aspect of the interface 
debond problem for a given loading configuration [20, 
21], a shear strength criterion has an important ad- 
vantage in that the interfacial shear strength, whether 
for the bonded or debonded regions, can be directly 
determined from the experimental results of the fibre 
fragmentation test. (This will be discussed in full de- 
tails in Part II of this paper [22].) Therefore, in the 
present paper, an improved micromechanics analysis 
is developed of the fibre fragmentation test based on 
the shear strength criterion for the interfacial debond- 
ing. Depending on the interface properties and the 
fibre tensile strength for given elastic constants of the 
composite constituents, three distinct conditions for 
the fibre-matrix interface are identified, i.e. full bond- 
ing, partial debonding and full frictional bonding. 
A particular emphasis is placed on the identification of 
the specific criteria required to satisfy each interface 
condition. The approximate analysis given in the pres- 
ent model leads to relatively simple closed-form equa- 
tions for all basic solutions for the stress distributions 
in the constituents, the external stress required for 
debonding or fibre fragmentation, and the mean fibre 
fragmentation length for the three different interface 
conditions. 

2. Theoretical analysis 
2.1. Basic governing conditions 
The geometry of the model and the governing condi- 
tions adopted in the present analysis are essentially 
the same as those employed in a previous work [19]. 
The shear-lag model shown in Fig. 1 contains a single 
fibre (of radius a) which is embedded at the centre of 
a coaxial cylindrical shell of matrix (of an outer radius 
b). L is half fibre length with partial debonded regions 
each of length, l, from both fibre ends. A set of cylin- 
drical coordinates (r,  O, z)  is selected so that the z-axis 
corresponds to the axis of the fibre and r is the dis- 
tance from the fibre axis. In the fibre fragmentation 
test, a tensile stress, cy, is applied to the matrix at the 
remote ends, and the stress is transferred to the fibre 
across the fibre-matrix interface. If we assume that the 
fibre ends are bonded to the matrix at z = + L, stres- 
ses can be transferred from the matrix to the fibre 
through continuity at the fibre ends. However, this 
condition is only valid until the maximum fibre axial 
stress reaches the fibre tensile strength (corresponding 
to the initial fibre length 2L) after which the fibre for 
the first time breaks into two pieces. As the applied 
stress is further increased the fibre breaks into grad- 
ually smaller segments until no more breaks occur. 
The mean value of the fibre fragment lengths at this 
point is called the critical transfer length. Because of 
the random nature of the flaw size and spatial distri- 
bution along the fibre length which causes the fibre 
segment lengths to be non-uniform, there may exist 
asymmetric distributions of stresses. For simplicity, it 
is assumed here that the fibre ends are debonded from 
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F i g u r e  1 A schematic drawing of the partially debonded fibre in the 
fibre fragmentation model. 

the matrix so that there is no stress transfer through 
the ends (i.e. ~F = 0 at z = + L). The mode of deforma- 
tion is assumed symmetric about the fibre axis (i.e. 
axisymmetric) as well as about the plane perpendic- 
ular to the centre of the fibre at z = O. Hence the stress 
components ((~r, c~ ~ eye, ~r~) and the displacement 
components (u% u ~) are all independent of the tangen- 
tial coordinate, O. The remaining stress and displace- 
ment components are all zero. 

2.2. Solutions for the stress components in the 
bonded r e g i o n : -  ( L - l ) ~ <  z~< ( L - / )  

The solutions for the fibre axial stress, cry(z), and the 
interracial shear stress, z[Z(z), are obtained with given 
boundary conditions in Appendix 1 

= (1 + Q { 1 -  cosh (132z) 
(Y~(z) 

~" cosh ([~2z) + 
~cosh-~2(-~--1)3; o'z (1) 

z[:(z) = ( ~ ) [ ( t  + 7~cy ~ sinh(132z) 

(2) 

where 

]32 = (b2 - a2) (1 + ~/7) 
( 1 + Y) [b ~ In (b /a)  - (b 2 - a z ) 2 / 2  - (b 4 - a4)/4 ]" 

(3) 
~[ = a Z / ( b  2 - a 2) and 0~ = E m / E f ,  which are the vol- 
ume ratio of the fibre to the matrix and the Young's 
modulus ratio of the matrix to the fibre, respectively. 
~ is the crack tip debond stress at the boundary 
between the bonded and debonded regions (Fig. 1). If 
it is assumed for a special case that the fibre-matrix 
interface is completely bonded (i.e. the debond crack 
tip stress ch = 0 when l =  0), the above equations 
become 

+ [, cosh   z - I_ 
cr}(z) = c~sh ( ~ - ~ |  ~ (4) 

2.3. Solutions for the stress components in the 
debonded region: - L ~< z~< - ( L - / )  
and ( L - l )  ~<z~< L 

The solutions for the fibre axial stress, c~(z), and the 
interfacial shear stress, ~ ~(z), are obtained with appro- 



priate boundary conditions in Appendix 2 

/33 
c~F(z) = B- [Dlexp(mzz)  + D2exp(ml z ) ]  

+ ch [D3 exp(m2z) + D4 exp(mlz)] (6) 

r[:(z) = 2(B2 [rn2D1 exp(rn2z) + m l D 2 e x p ( m l z ) ]  

than the fibre axial strain due to the relative slip 
between fibre and matrix. Therefore, combining Equa- 
tions A1, A2 and A15 at the boundary, 0" 1 is obtained 
from 

(x(1 + 7)Vmnl + (Y ~vf(nl + ~,) 
~ l  - (19) 

0t)L(V m - -  Vf) -1" (0(Vf "Jr- y V m ) H  2 

where 

tl 1 
- m ~ e x p ( - m l l )  + m 2 e x p ( - m 2 1 )  + ( m l  - m 2 ) e x p [  - (ml  + m2)l] 

exp( - mfl) - exp( - m21) 

) 
+ ol[m2D3 exp(m2z) + nhD4exp(mlz ) ]~(7 )  

where the non-dimensional coefficients D1, D2, D3 
and D4 are given by 

1 - e x p ( - m l l )  
D1 = (8) 

exp(m2L) [exp( - ml I) - exp( - m 21)] 

1 - exp( - m21 ) 
D2 - (9) 

exp(mlL) [exp( - roll) - exp( - m21)] 

1 
D3 = - (10) 

exp(m2L) [exp( - rnl l) - exp( - m2/)] 

1 
(11) 

exp(mlL) [exp( - m l  1) - exp( - m 2 1 ) ]  

B1 -}- (B1 + 4~B1) 1/2 
ml - (12) 

2 

- B1 + (B1 + 4)~B1) 1/2 
m 2 = (13) 
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where 
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B1 - (14) 
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B 2  - -  )~B1 (15) 
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L is the reciprocal length giving the effective frictional 
shear stress transfer and 6 is the asymptotic debond 
stress for long fibre length. These parameters are re- 
lated to the coefficient of friction, g, and the residual 
clamping stress, qo, as for the fibre pull-out model 
[233 

L = 2}xk/a (17) 

(~ = - q o / c o k  (18) 

where co = 0(vf/(0(vf + yVm) and k = (0(vf + ?Vm)/ 
[0((1  - -  Vf) -1- 1 ~- V m ~- 2y]. 
For a given debond length, 1, relative to L, determina- 
tion of the crack tip debond stress, (5t, is subject to the 
condition that the fibre axial strain is equivalent to the 
matrix axial strain at the boundary between the 
bonded and debonded regions (i.e. c?u~(z)/~z = 
~?U~m(a, z ) /~z  at z = _+ (L - l)). Within the debonded 
region the matrix axial strain at the interface is greater 

(20) 

ml exp( - ml 1) - m 2 exp( - m21) 
n2 = (21) 

e x p ( - m l l  ) - e x p ( - m 2 1 )  

2.4. Fibre-matrix interface debond criterion 
In the shear strength criterion, the debond crack 
propagates when the maximum interracial shear stress 
at the debond crack tip z = +_ ( L - l )  reaches the 
shear bond strength, ~b (which is assumed constant), 
i.e. 

r[ " ( L - I )  = % ( o r , ' ~ [ = ( - L + l ) =  - % )  (22) 

By substituting Equation 22 into Equation 2, the 
debond crack tip stress, oh, is expressed as a function 
of the material properties and the external applied 
stress, (5. Thus 

or, \ ~ + ~ ]  - \ a ~ 2 ]  c~ - 1)3 (23) 

Therefore, by combining Equations 19 and 23, one can 
derive the stress applied to the matrix at the remote 
ends, cy = Cyoa, for debond crack propagation 

(2n3/a[32 ) "['b c o t h  []32 (L - 1)3 - 0(vf(nl + )~) 
(Yod = 

where 

(1 + 7 ) [ n 3 / ( 0 (  + 7 )  + V r n n l ]  

(24) 

n 3 = 0()~(V m - -  Vf )  q- n2(0(vf + yVm) (25) 

2.5. Fibre fragmentation criterion 
When the applied stress is sufficient to cause the max- 
imum fibre axial stress to exceed the local fibre tensile 
strength, the fibre fractures. In the present study, 
a fibre tensile strength model analogous to that em- 
ployed in the previous study [19] is used to predict the 
average strength of the fibre, CyTs(2Lg), corresponding 
to a given gauge length, 2Lg, based on the Weibull 
probability of failure [24] 

CYTs(2Lg) = C~u(2Lg) -I/m F(1 + 1/m) (26) 

where m and Cyu are the Weibull modulus and the scale 
factor, and F is the gamma function. Therefore, the 
average tensile strength of a fibre segment of length, 
2L, is given by 

CYvs(2L) = O'vs(2Lg) [Lg/L] 1/m (27) 

6235 



Because the fibre axial stress, eye(z), is maximum at the 
centre of the embedded fibre 

Cyf(0) = CYTs(2L ) (28)  

Therefore, by substituting Equation 28 into Equation 
1, the fibre fragmentation criterion is derived in terms 
of the external stress, cy = Cyof , i.e. 

one fibre length, 2L = 2 ram, are plotted. Correspond- 
ing plots for the negative axial direction can also be 
shown by symmetry of the axial stress and anti-sym- 
metry of the interface shear stress with respect to the 
fibre centre, z = 0. The effect of modulus ratio, Era~El, 
is clearly visualized on the stress distribution. Both the 
maximum values of the fibre axial stress and the inter- 

= ({Z q- 7"] C Y T s ( 2 L ) c o s h [ [ 3 2 ( L -  l ) ] -  G, (0( q- y ~  
(Yoe \ ~ - ~ ]  ~ o s ~ - ~ t ~  Z 1 = \ ~ }  {(YTs(2L) +(2"cb/afJa)cosech[[J2(L - l)]} (29) 

3. Three cases of interfacial bonding 
Depending on the applied stress relative to the fibre 
tensile strength and the interfacial properties (which 
include the interracial shear bond strength, %, in the 
bonded region, and the coefficient of friction, p, and 
the residual clamping stress, qo, in the bonded region) 
for given elastic properties of the constituents and the 
geometric factors of the fibre fragmentation model, 
three distinct cases are possible with regard to the 
fibre-matrix interface condition: (i) full bonding; (it) 
partial debonding; and (iii) complete debonding or full 
frictional bonding [18]. In this section, the conditions 
required to satisfy each interface state are systemat- 
ically identified in terms of the relationship between 
the applied stress and the properties of the constitu- 
ents and the interface. The stress distributions in the 
constituents are characterized for each interface state, 
and the important factors governing the stress fields 
are identified. Therefore, the fibre fragmentation cri- 
terion is applied to derive the mean fibre fragment 
length, 2L, as a function of the applied stress. Specific 
results are calculated based on the solutions derived in 
the previous sections for the model composite of a car- 
bon fibre in an epoxy matrix [19], and whose mechan- 
ical properties are given in Table I. Also included in 
the table are the Weibull statistics of the fibre tensile 
strength. Unless otherwise specified, the interfacial 
properties used for the numerical calculations are 
Zb = 72.7 MPa, p = 1.5 and qo = - 1 0 M P a  which 
are determined from the single-fibre pull-out test 
[20, 213. 

3.1. Full bonding 
We first consider the case when the interface is per- 
fectly bonded over the full fibre length where elastic 
stress is transferred across the interface. The fibre axial 
stress, cyF(z), and the interfacial shear stress, m[:(z), 
normalized with the applied stress, ~, are plotted 
along the normalised axial direction, z/a, as shown in 
Fig. 2. Because varying the fibre length only changes 
the effective length of the central part of the curve 
whose stress values are almost constant, those for only 

facial shear stress, which are obtained in the centre 
and at the ends of the fibre, respectively, increase with 
decreasing modulus ratio, Em/Ef, at a given applied 
stress. This means that the efficiency of stress transfer 
across the fibre-matrix interface increases with de- 
creasing Era~El. That is, a lower external stress is 
required for fibre fragmentation or debond initiation 
for a composite with a smaller value of Em/Ef if other 
parameters remain the same. 

The fibre-matrix interface is fully bonded so long as 
the maximum interfacial shear stresses obtained at the 
fibre ends (z = _+ L) are smaller than the interface 
shear bond strength, %, which is assumed to be a ma- 
terial constant. Hence 

v[=(L)<% (or, r ] ' Z ( - L ) >  - % )  (30) 

Combination of Equations 5 and 30 gives 

Under this circumstance, the external stress corres- 
ponding to the fibre fragmentation, %f, is obtained 
from Equation 4 

= r + 7) cosh([3zL) (32) 
~o, \1~-~?/OTs(2L) cosh(132L) - 1" 

Because Equation 32 also has to satisfy the condition 
for full bonding at the interface governed by Equation 
31, fibre fragmentation takes place when 

(a]32) sinh(132L) 
% > \ 2 - ]  cosh(J32L) -- 1 ~Ts(2L) (33) 

The curve in Fig. 3a shows the critical combination of 
the interfacial bond strength, %, and the fibre length, 
2L, which allows the initial debonding at the interface. 
Therefore, the areas above and below the curve repres- 
ent, respectively, full bonding and partial debonding 
at the interface. The average fibre tensile strength was 
estimated based on Equation 27 with the Weibull 
parameters given in Table I. Therefore, for a com- 
posite with a given value for %, it is possible to 
evaluate the minimum fibre length, (2L)d, until which 
fibre fragmentation takes place whilst the interface is 

T A B  LE I Mechanical/ interface propert ies of carbon fibre epoxy matrix composites and the Weibull parameters  of fibre tensile strength 

Mechanical/ interface propert ies 

Ef = 230 GPa,  E m = 3.0 GPa,vf = 0.2, Vm = 0.4 
% = 72.7 MPa,  p, = 1.5, qo = -- 10 M P a  

Weibull parameters  

2Lg = 12 ram, ars(2L~) = 2.35 GPa,  m = 3.8, c~u = 5.0 
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Figure 3 Plot of interface shear bond strength, %, as a function of 
fibre length, 2L, calculated based on Equation 33: (a) for variable 
average tensile strength, Crrs(2L ), according to the Weibull para- 
meters in Table I; and (b) for constant fibre tensile strengths 
C~TS = 2.0, 3.0 and 4.0 GPa. 

fully bonded. For  example, (2L)a ~ 2.71 mm for 
% = 72.7 MPa.  If % is raised to 100 MPa,  or reduced 
to 50 MPa,  the corresponding values for (2L)d vary 
inversely, giving (2L)a ~ 0.83 and 11.25 mm, respect- 
ively. 

Further,  if the fibre tensile strength is assumed con- 
stant independent of fibre length, % is almost  invari- 
ant with 2L over the whole range of fibre lengths, 
except for very short fibre lengths where T b decreases 
dramatical ly with 2L (Fig. 3b). Increasing the fibre 
tensile strength also increases the corresponding con- 
stant % values. This implies that for a given Zb whether 
fibre f ragmentat ion can occur or  not, depends pre- 
dominant ly  on the constant  fibre tensile strength, and 
once the fibre initially fractures it continues until the 
fibre length becomes very short. For  example, the 
characteristic fibre lengths for initial debonding 
2L)d ,,~ 0.19 and 0.39 mm are obtained for O~s --- 2.0 
and 3.0 GPa ,  respectively, if % = 72.7 MPa.  For  the 
same interfacial bond strength, fibre f ragmentat ion is 
not  possible if CyTs is greater than approximately  
3.5 G P a  in this full bond  model (see Fig. 3b). 

Once the requirements for full bonding  are satisfied, 
the mean fibre f ragmentat ion length, 2L, can be deter- 
mined as a function of  the external stress, o~f, and 
the fibre tensile strength, aTs(2L), by rearranging 
Equat ion  32 

oof -/-(cz + 3,)/(1 + 7)]CYTs(2L) 
(34) 
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E 
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Figure 4 Variation of mean fibre fragment length, 2L, versus ap- 
plied strain, e. in the full, bonded interface model, for ( ) varying 
aTs (2(L), and (- ) constant fibre tensile strengths, ars. 

The mean fibre fragment length, 2L, is plotted as 
a function of the applied strain, e ( = cY/Em), in Fig. 4. 
Also superimposed are the results obtained when the 
fibre tensile strengths are assumed to be constant  as 
given in Fig. 3b. The fully bonded  model  predicts that  
the mean fibre fragment length declines remarkably 
within a narrow range of applied strain, the decrease 
being instantaneous if a constant  OTs is used, which is 
followed immediately by an almost  constant  value as 
the applied strain is further increased. The threshold 
value of  the applied strain for the precipitous drop in 
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fibre fragment length increases with increasing con- 
stant, O~s. In contrast, there is no such threshold 
observed when C~s is given by the Weibull equation. It 
is also worth noting that the mean fibre fragment 
length becomes almost identical, regardless of whether 
the fibre tensile strength is Weibull-controlled or 
constant, when the applied strain is sufficiently 
large (Fig. 4). 

However, it should be reiterated here that because 
Equation 34 is valid when the requirements of full 
bonding (given by Equation 33) are completely satis- 
fied, only the initial declining part  of the curves are 
effective at low applied strains in Fig. 4. The charac- 
teristic length, (2L)a, which is maximum fibre length 
obtainable before debond initiation, is controlled 
strongly by the interface bond strength, %, (Fig. 3a) as 
mentioned earlier. Therefore, unless % is very large to 
prevent the interface from debonding (or, alternatively 
the matrix can withstand an extremely large strain), it 
is most unlikely that the fully bonded model can 
completely describe the relationship between mean 
fibre fragment length and applied strain during the 
whole fibre fragmentation process for practical fibre 
composites. 

3.2.  Par t ia l  d e b o n d i n g  

In the fibre fragmentation test, the interfacial shear 
stress at the fibre ends quickly rises to a value corres- 
ponding to debonding as the applied stress increases. 
Plots of the fibre axial stress, cy~(z)/c~, and the inter- 
facial shear stress, ~c[~(z)/c~, calculated based on Equa- 
tions 1 and 2 for the bonded region and Equations 
6 and 7 for the debonded region are shown in Fig. 5. 
Because a constant stress ~ = l l 7 . 4 M P a  (corres- 
ponding to initial debonding for % = 72.7 MPa) is 
applied to the composite of a given total fibre length 
2L = 2 ram, different debond lengths are shown for 
three different interface bond strengths, %( = 50, 72.7 
and 100 MPa). The fibre axial stresses are almost 
identical for these % values, except near the boundary 
between the bonded and debonded regions where the 
stresses are high for a low %. There is discontinuity of 
the interface shear stress at the boundary where the 
stress drop is large with a high % (which is equivalent 
to the maximum stress just before the stress drop). In 
the debonded region, the interface shear stress in- 
creases non-linearly towards the fibre ends due to the 
small Poisson contraction of the fibre compared to the 
matrix under uniaxial tension. 

The relationship between the applied stresses 
~oa and %f is plotted as a function of normalized 
debond length, l/a, based on Equations 24 and 29 in 
Fig. 6 Only one curve is shown for ~oa in Fig. 6a, 
because it is almost independent of the mean fibre 
fragment length, 2L. It is again demonstrated that 
when the fibre is sufficiently long it fractures without 
debonding (because Cyoa > %0  until its length reaches 
a characteristic value (2L)d. (2L)a = 2.71 mm is ob- 
tained for % = 72.7 MPa  by equating Ooa = ~o~ (i.e. 
l = 0, in Fig. 6a), which is exactly identical to the value 
determined in the previous section (Fig. 3a). Once 
debonding initiates it grows as fibre fragmentation 
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continues. It is clear that both the fibre length corres- 
ponding to initial debonding, (2Lh, and the debond 
length at a given applied stress are higher for the 
interface with a lower rb value (Fig. 6b). This is a direct 
result of the reduced stress required for debonding, 
trod, due to the low %, whereas ~of remains almost 
constant independent of %. 

The above accounts are correct when the interface 
conditions necessary for the partial debonding are 
completely satisfied, that is, the crack tip debond 
stress, oz, (and the debond length, l) must be greater 
than zero. From the debond criterion given by Equa- 
tion 23 

> k , l - ~yJ  ~ rucoth[13z(L- / ) ]  (35) 

In the partially debonded model, whether debond 
continues or not depends strictly on the relative mag- 
nitude of the stresses required for debond propaga- 
tion, trod, and for fibre fragmentation, Crof, at a given 
debond length I. If Crod given in Equation 24 is smaller 
than cyof of Equation 29 interfacial debonding con- 
tinues in preference to fibre fragmentation; and vice 
versa if trod is greater than ~of. In conjunction with the 
general requirements of the partial debond model 
specified by Equation 35, the debond crack propa- 
gates when 

a certain value (i.e. Zb = 94.7 MPa for 2L = 1 mm and 
12 b = 78.8 MPa for 2L = 2 mm), further fibre frag- 
mentation is not possible, although debonding can 
occur for a very short length. As the fibre length 
decreases, the upper bounds for both debond and 
fragmentation increase as a result of corresponding 
increase in the debond length for a given %. There is 
a maximum debond length which is obtained before 
fibre fragmentation takes place for a given fibre length. 
This value can be determined systematically from the 
plot between the debond length, 2l, versus the fibre 
length, 2L, for a given % shown in Fig. 8. This effect- 
ively means that there are alternating debond propa- 
gation and fibre fragmentation taking place during 
continuous loading in the fibre fragmentation test. In 
addition to the maximum fibre length corresponding 
to debond initiation, a minimum fibre length is also 
identified below which no further debond propagation 
occurs. The partial debond model is only effective for 
the range of fibre lengths between these limits where 
the debond length increases with decreasing fibre 
length (or increasing applied strain) for a given Zb. 

The above discussion for the partial debond model 
is summarized in Fig. 9 for two different ~b values. The 
mean fibre fragment length, 2L, consists of two com- 
ponents: namely the bond length (2L - 2/), and the 

( _ ~ )  In3 + Vmnl(~ + y)] CrTs(2L)+ ~vf(nl + ~,)cY ocvf(nl-t-)~) (a132" ] 
n3 coth [ ~ / ~  --/-~ ~ [n3 + Vmrtl (~ -b 7)] cosech [132(L - -  I ) ]  > l~b > - -  VIY/1 (~ -1- 'y) I k 2 - -  j (YTs(2L) (36) 

Similarly, the condition for fibre fragmentation is ob- 
tained from 

( ~ )  . . . .  sinh[132(L -- / ) ]  
>Tb'> 1 

(a~_) [na + vmnz(~ + y)] CY.rs(2L) + Tve(nz + X) ~ 
n3 coth 1-132(L ---/-~--- In3 + Vmnl (~ + 7)] cosech 1-132(L - I)] 

(37) 

Finally, the mean fibre fragmentation length 2L, 
which is the sum of the debonded and bonded lengths 
in the partial debond model, can be determined from 
Equation 29 

2L = 21 + (2/132) sinh- 1 -[(1 + 7)/(~ + 7)] ~of - Crrs(2L) 

(38) 

Therefore, a further study is made on the relationship 
between the applied stresses ~od and ~of with reference 
to Fig. 7 where % is plotted versus the normalized 
debond length, l/a, for different fibre lengths using 
Equations 36 and 37. The solid lines represent the 
upper bounds for interface debond (which are also 
equivalent to the lower bounds for fibre fragmenta- 
tion), and the dotted lines represent the upper bounds 
for fibre fragmentation. The lower bound curves for 
interface debonding are not shown here because the 
results are negative for the properties of the model 
composites being studied. There are three different 
regions identified: Region A for debonding only; Re- 
gion B for fibre fragmentation without further de- 
bonding; Region C for neither debonding nor fibre 
fragmentation. It is found that if ~b is greater than 

debond length 21. These two length components bal- 
ance each other to determine the instantaneous mean 
fibre fragmentation length for a given applied strain. 
As the applied stress (or strain) increases, the debond 
length increases while the bond length decreases. 
Therefore, at low strains the bond length component 
dominates, but at high strains the debond length com- 
ponent becomes increasingly more important, even- 
tually the latter outpacing the former (see Fig. 10). 
When the mean fibre fragment length is sufficiently 
short at a high applied strain, an infinitesimal increase 
in debond length or additionl fibre fragmentation re- 
quires the applied strain to suddenly increase toward 
an infinite value. This implies that. a moderate (i.e. 
several-fold) increase in the applied strain at this stage 
would not cause any further fibre fragmentation. In 
practical fibre fragmentation tests, the mean fibre frag- 
ment length obtained after substantial increase in load 
application without further fibre fragmentation is 
called the critical transfer length. Therefore, the short- 
est mean fibre fragment length determined at the end 
of the curve shown in Fig. 9 can be regarded as the 
critical transfer length, (2L)~, theoretically predicted 
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for the carbon fibre--epoxy matr ix  composite .  It  is also 
noted that  the contr ibut ion of the debond  length to 
the critical transfer length is slightly larger for the 
interface with a high bond  strength (i.e. l /L ~ 0.7 and 
0.67, respectively, for % = 50 and 72.7 MPa),  while the 
converse is true for the critical transfer length, (2L)~ 
(i.e. (2L)~ ~ 0.47 and 0.4 ram, respectively), if other  
parameters  are kept  the same. 
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3.3,  C o m p l e t e  d e b o n d i n g  (o r  fu l l  f r i c t i o n a l  
b o n d i n g )  

The condit ion for complete  debonding at the interface 
requires that  the fibre length and the debond length be 
identical, and the interfacial shear stress is m a x i m u m  
at the debond  crack tip which now coincides with the 
fibre centre (z = 0). These requirements  cannot  be 
achieved in practice because the fibre axial stress has 
to be a m a x i m u m  in the fibre centre whether  the fibre 
is completely debonded  or not. This means that  the 
interfacial bond  strength has to be zero (% = 0) which 
is rather  impractical  for mos t  fibre composites.  Alter- 
natively, the fibre can be inherently mechanical ly 
bonded to the matrix,  which is more  likely to occur in 
some ceramic matr ix  composi tes  [20]. In the latter 

case, the interface shear stress is governed wholly by 
the C o u l o m b  friction law, which is m in imum in the 
centre where there is no Poisson contract ion taking 
place and increases towards  the fibre ends. Assuming 
the interface is fully frictionally bonded,  the solutions 
for the fibre axial stress and the interfacial shear stress 
given by Equat ions  6 and 7 are still valid if the crack 
tip debond stress, ~1, is substi tuted by the fibre axial 
stress at the centre, ~F(0), and l =  L for the non- 
dimensional  coefficients Di (where i = 1, 2, 3, 4) given 
in Equat ions  8-11. 

B3 
cyf(z) = B22 [D[ exp(mzz) +D'2exp(rnlz)] 

+ cyf(0) [D;  exp(mzz) + O'4exp(mlz)] (39) 
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z~(z) = -- 2 (B2 [meDi exp(mzz) + m,Di exp(mlz)] 

+ ~(0 )  [m2D'3 exp(m2z) + miD'4 exp(m~z)] t 

% 

(40) 

where 

D'i = DI]z=L (41) 

crf(0) can be determined for the boundary condition 
that the interfacial shear stress is minimum in the 
centre, i.e. z[:(0) = - ~tqo and 

In Fig. 13 the mean fibre fragment length, 2L, is plot- 
ted as a function of the applied strain, ~, based on 
Equation 45. To show clearly the general trend in 
a wide range of applied strain, several constant fibre 
tensile strengths are chosen for calculation. Analogous 
to the fully bonded model, the full frictional model 
predicts a continuous decrease (toward zero) of the 
mean fibre fragment length with increasing applied 
strain. A high fibre tensile strength results in a high 
applied strain required to initiate the fibre fragmenta- 
tion. However, varying the constant fibre tensile 
strength does not much affect the mean fibre frag- 
mentation length at a high applied strain. 

c~F(o) = 

(Y[ ( l  -~- ~{)Vm/(~V f -~- "yVm) ] (m2D'l + m,Di) + os~(X + rn2D' 1 + miD'2) 
meD; + mlD~ 

(42) 

The fibre axial stress and the interface shear stress 
(normalized with the applied stress) are plotted along 
the axial direction, z/a, for varying residual clamping 
stress, qo, as shown in Fig. 11. As expected, both the 
fibre axial stress and the interfacial shear stress distri- 
butions are higher for a larger q0 value (in absolute 
terms) for a given fibre length. Varying the coefficient 
of friction, la, would have similar effects on the stress 
distributions. The prevailing influence of differential 
Poisson contraction between the fibre and matrix is 
clearly seen in Fig. l lb where the interracial shear 
stress increases, with the stress gradient becoming 
steeper, toward the fibre end. For the fully frictional 
model, the external stress corresponding to fibre frag- 
mentation is then determined by equating Equation 
42 directly to the fibre tensile strength, CYrs(2L). 

4. Discussion 
A major improvement of the present model relative to 
the earlier models [2, 12, 18] which are also based on 
a shear strength criterion for interfacial debonding 
is that the conditions required to satisfy the three 
different interfaces (i.e. full bonding, partial debonding 
and full frictional bonding [18]) are systematically 
identified. This allows the construction of a complete 
picture for the relationship between the mean fibre 
fragment length and the applied strain which is ex- 
perimentally determined from the continuously 
monitored fibre fragmentation test. Moreover, by 
properly taking into account the differential Poisson 
contraction between the fibre and matrix which varies 

(Yof --  
7.Vf + ~/V m CYTs(2L ) (m2D'3 + rnlD'4) + 06"(k + m2D] + miD'2) 

(1 "~-~/)V m m2D'l + rnlD'2 
(43) 

To satisfy the full frictional bonding condition at the 
interface, the applied stress Crof given in Equation 43 
must be at least greater than zero, which results in the 
fibre strength greater than a certain value for a given 
mean fibre fragment length, i.e. 

X + m2D'~ + 1t11D'2 
O'Ts(2L) > 06" (44) 

(m2D'3 + miD',,) 

In Fig. 12 the area above the solid line represents the 
combination of mean fibre fragment length and fibre 
tensile strength which satisfies the full frictional bond- 
ing at the interface during fibre fragmentation. It is 
seen that the full frictional interface model is valid for 
a small range of short fibre length if the average tensile 
strength model described by the Weibull statistics of 
Table I is used. The effective fibre tensile strength has 
to be greater than approximately 5.5 GPa for the 
properties of the composite being studied. Taking the 
aproximate values for the non-dimensional coeffi- 
cients given in Equation 40, the solution for the mean 
fibre fragment length, 2L, is given in a closed form 
equation 

with both the axial position and the applied strain, it is 
shown that depending on the relative properties at the 
bonded and debonded interfaces the frictional shear 
stress increases from the boundary of the two regions 
toward the fibre ends. This effectively discourages 
debond propagation during the fibre fragmentation 
process, as opposed to the easy debond propagation 
due to the Poisson contraction of the fibre in the fibre 
pull-out test [20, 21]. Consequently, it is most unlikely 
to induce complete debonding along the whole fibre 
length even at very high applied strain in most prac- 
tical polymer matrix composites. 

Apart from the three different interface states dis- 
cussed above, there is another state of"interphase" (as 
opposed to the "interface" which is conveniently as- 
sumed to have zero thickness), namely the yielding of 
matrix material immediately surrounding the cylin- 
drical fibre. Plastic yielding occurs in the matrix in- 
stead of debonding at the fibre-matrix interface if the 
interface shear bond strength, %, is sufficiently higher 

2 L -  2 in{m~ (r 
m2 

q- ~/Vm)O'TS(2L) -[- ()~ -- ml)(~vf  + TVm) O)6- -- mlVm(l + 7)Uof~ 
(45) 
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than the matrix yield strength in shear, ~my, as in some 
composites containing ductile thermosets/thermo- 
plastics and metal matrices. In the absence of the exact 
knowledge concerning the effective thickness of the 
interphase region being involved in plastic yielding 
and the elasto-plastic stress-strain behaviour of the 
matrix material, a detailed analysis is excluded in the 
present study. This would be one of the research areas 
which need further investigation to enhance under- 
standing of the stress transfer in the fibre fragmenta- 
tion test. It is noted that a constant matrix shear 
strength, "Cmy, is assumed in a previous study [12-1. 
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Figure 13 Variation of mean fibre fragment length, 2L, as a function 
of applied strain, ~, predicted in the fully debonded interface model 
for constant fibre tensile strengths aTs = 6, 8 and 10 GPa. 

There are other limitations of the present model, 
besides the assumption of perfectly elastic stress- 
strain behaviour for both the fibre and matrix: neglect 
of the anisotropy of fibre elastic properties and resid- 
ual stresses in the axial direction (in addition to those 
in the radial direction) generated from the differential 
thermal contraction between fibre and matrix and 
a simplified fibre fracture criterion. In particular, with 
regard to the fibre strength model, it was assumed here 
that the fibre has uniform tensile strength along the 
fibre varying only with its length, and thus it fractures 
always in the centre due to the axisymmetric stress 
field. In practice, however, the fibre can break at any 
weak spots when the local stress exceeds the load- 
bearing capacity. The local stress is strongly in- 
fluenced by the spatial distribution of the flaws of 
random sizes inherent on the brittle fibre surface 
which cannot be adequately accounted for in the aver- 
age tensile strength model. 

Within the limitations of the present micro- 
mechanics analysis, it is clearly demonstrated for 
a carbon fibre-epoxy matrix composite that one 
model cannot represent the interface state during the 
whole fibre fragmentation process. While the fully 
bonded interface model can describe the early stage of 
fibre fragmentation process (until the fibre length 
reaches a characteristic value (2L)d corresponding to 
initial debonding) for low applied strains, the interface 
soon becomes partially debonded as the applied strain 
increases, depending on the interface shear bond 
strength and the fibre tensile strength. Therefore, the 
mean fibre fragment length predicted for a given strain 
is the sum of the bonded and debonded lengths, the 
former diminishes while the latter grows with the 
applied strain, in the context of the partially debonded 
interface model. A non-zero critical value is always 
reached for the mean fibre fragment length when the 
applied strain required for further fibre fragmentation 
or interracial debonding approaches infinity. There- 
fore, it is obvious that the critical transfer length, (2L)c, 
can be considered as a material constant for given 
properties of the composite constituents and the inter- 
face. In reality, the critical transfer length, (2L)c, is 
defined as the mean fibre fragment length determined 
after further substantial increment in the applied 



strain leads to no additional fibre fragmentation, 
which is exactly the same as what is predicted by the 
present analysis. In view of the co-existence of bonded 
and debonded regions in the critical transfer length, 
(2L)~, of vital importance in the fibre fragmentation 
experiment is the accurate measurements of their 
lengths which are absolutely necessary to characterize 
properly the relevant interracial properties. 

5. Conclusions 
A micromechanics model is presented for the stress 
transfer in the single-fibre fragmentation test. Depend- 
ing on the relative magnitude between the interface 
shear bond strength and the fibre tensile strength, 
three distinct interfaces are identified inclusive of full 
bonding, partial debonding and full frictional bond- 
ing. The conditions necessary to satisfy these interface 
conditions are also quantitatively evaluated as a func- 
tion of the above two important parameters, which 
allow the relationship between the mean fibre frag- 
ment length and the applied strain to be established 
during the whole fibre fragmentation process. 

The theoretical study for a model composite of 
carbon fibre-epoxy matrix shows that while the fully 
bonded interface model can describe the fibre frag- 
mentation process for low applied strains, the partially 
debonded interface model is most suitable for the later 
stage for high applied strains. However, complete de- 
bonding is effectively discouraged due to the differen- 
tial Poisson contraction between the fibre and matrix 
at the debonded interface. The mean fibre fragment 
length decreases with applied strain, reaching a critical 
value, (2L)~, when the applied strain required for fur- 
ther fibre fragmentation approaches infinity. The criti- 
cal transfer length can be regarded as a material 
constant which is totally consistent with the definition 
of a mean fibre fragment length in practice. In 
a broadly-based study, the present micromechanics 
model is extended to interpret adequately the fibre 
fragmentation test data, to be reported in Part II [221 
of this paper. This allows the generation of useful 
interface properties for the carbon fibre-epoxy matrix 
composite with several different fibre surface treat- 
ments and matrix materials. 
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stress, r~(r, z), can be related to the displacements by 

~U~(Z)~z Ell{ cy[(z)-v f[~(r 'z )k-cy~ } (A1) 

~u~n(z) Eml [ (~(z)-vm[G~n(r'z) + (7~ (12) 

8u~(r, z) 2(1 -~- Vm) 
- "c "~ (r, z )  ( A 3 )  

~ r  E m 

where E and v are Young's modulus and Poisson's 
ratio, respectively. The subscripts f and m refer to fibre 
and matrix and the superscripts are coordinate direc- 
tions. It is assumed here that for a thin fibre the axial 
displacement is independent of the radial position, 
and the stress components in the radial and circum- 
ferential directions are neglected for Equations A 1 and 
AZ Further, in Equation A3 for the matrix shear 
strain, the radial displacement gradient with respect to 
the axial direction is neglected as compared to the 
axial displacement gradient with respect to the radial 
direction. Also, the mechanical equilibrium condition 
between the external stress, cy, and the internal stress 
distribution requires that 

b2cy = a2cr/(z) + 2 rcy~,(r, z) dr (14) 

The exterhal stress is transferred to the fibre through 
the interfacial shear stress r~Z(z), and the equilibrium 
between these stresses is described by 

d ~f (z) 2 
- r [~ ( z )  ( A 5 )  

dz a 

Therefore, the shear stress in the matrix, r~(r, z), can 
be expressed as a function of the interfacial shear 
stress, r[Z(z), analogous to the fibre pull-out problem 
[81 

T(b  2 - -  r 2) 
rg(r, z) - "ff=(z) (a6) 

a r  

Combination of Equations A3 and A6 for the bound- 
ary condition of axial displacement continuity at the 
bonded interface (i.e. u~(a, z) = uf(z)) and integration 
give 

v (b ~ - r  ~) Em [uZ(b, z) - u~(z)]  
~;~(r, z) - 

ar 2a(1 +Vm)[ ( l+y ) ln (b /a ) - l / 2 ]  
(A7) 

E m [u~(b, z) - u~(a, z)l 
vrZ(z) = (A8) 

2a(1 + Vm)[(1 + 7)ln(b/a)-- 1/21 

Based on the relations between the stress components 
and the axial displacements given in Equations A1 
and A2, the axial stress in the matrix can be derived 
from Equations A3 and A7 

~m(r,  Z) = ~ ( a ,  z) + 
[b 2 ln(r/a) - (r 2 - a2)/21 [G~(b, z) - eye(a, z)] 

(b 2 - a 2)[(1 + 7) In(b/a) - 1/2] 
(A9) 

Appendix 1. Stress transfer in the bonded 
region: - ( L - l )  ~< z~< ( L - I )  
For perfectly elastic and isotropic fibre and matrix, the 
axial stresses, eye(z) and eye(r, z), and the matrix shear 

where cyZ(a, z) ( = ~ cyF(z)) and cy~,(b, z) are the matrix 
axial stresses at the inner (r = a) and outer (r = b) 
surfaces, respectively. Further, combination of 
Equation A8 with the mechanical equilibrium equa- 
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tion A4 yields 

cs~,(b, z) = cy[(z) [~ - 1/([327) - a/([3272)2 ] 

~- (3"(1 -it- ~/)/([32~/2) (A10) 

where 

b 4 l n ( b / a )  - (b 2 - a2)2/2 - (b r - a4)/4 (A11) 
[32 = a4[( 1 + 7)ln(b/a) - 1/2] 

Therefore, combining Equations A5 and A8-A10 
yields a differential equation for the fibre axial stress 
cyf(z) as 

d 2 eye(z) 
d z  2 

- [32[ c~(z)-cy(I+\~TT/'j  Y'~] (A12) 

where the coefficient [32 is a function of the elastic 
properties and geometric factors of the constituents 
and is given in Equation 3. The solution of Equation 
A12 is subjected to the following boundary conditions 
for partially debonded fibre-matrix interface as a gen- 
eral case 

~s~( +__ (L - l)) = c h (AI3)  

where ch is defined as the crack tip debond stress at the 
boundary between the bonded and debonded regions. 
From the solution of fibre axial stress c~[(z) as given in 
Equation 1, the corresponding interracial shear stress 
~[Z(z) is obtained in Equation 2. 

A p p e n d i x  2. S t ress  t r a n s f e r  in t h e  
d e b o n d e d  reg ion :  - L ~< z~< - ( L - / )  
and ( L - I )  ~ z <~ L 
Because the interfacial shear stress, ~(z),  is the highest 
at the ends of the embedded fibre, debonding is ex- 
pected to commence from the ends. In the debonded 
region frictional slip occurs at the interface where the 
stress transfer is governed by the Coulomb friction 
law. Assuming a constant coefficient of friction, g, 
along the debonded interface it follows in the debon- 
ded region (L - l ~< z ~< L) that 

~;~(z) = - g[q0 + q*(z)] (A13) 

where qo is the residual clamping stress (compressive) 
caused by the matrix shrinkage and differential ther- 
mal contraction (or expansion) of the constituents 
occurring during fabrication of the composite, q*(z )  is 
the additional radial stress at the interface arising 
from the differential Poisson contraction between the 
fibre and matrix which is subjected to tension. Accord- 
ing to Gao et al. [23] the solution for this additional 
stress is 

(~Vf (~f(Z) - -  V m o ' z ( a ,  Z) 
q*(z )  = (A14) 

a ( 1 - V f )  + 1 + v  m + 2 7  

Combining Equations A13 and A14 with the relation- 
ship between the fibre axial stress, cyf(z), and the inter- 
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facial shear stress, r[Z(z), in Equation A5 gives the 
matrix axial stress at the interface, eye(a, z) 

cy~(a , z )  = _ (~vf + TVm) (dcy f ) ~Vf 

\ Vm / \X dz + C0e + --Vm ~f 

(A15) 

Therefore, combination of Equations A4, A8, A9 and 
A15 yields a differential equation for the fibre axial 
stress 

d2o ' f  dcyf 
dz 2 + B1 ~-z - B2cY~ = B3 (A16) 

where the coefficients B1, B2 and B3 are given in 
Equations 4, 5 and 6. The general solution of Equa- 
tions A16 for the partially debonded interface in the 
region ( L -  l~< z ~< L) is subjected to the boundary 
conditions 

~f (L - l) = ch (A 17) 

~f (L) = 0 (A18) 

Therefore, the fibre axial stress, cyf (z), and the inter- 
facial shear stress, r[Z(z), are given in Equations 6 and 
7, which hold for the positive axial direction (i.e. the 
right-hand part of the fibre in Fig. 1). The correspond- 
ing solutions valid for the negative axial direction are 
obtained by symmetry of the axial stress and antisym- 
metry of the interfacial shear stress with respect to the 
fibre centre. 
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